Extract samples and return measurement, individual, and population-level estimates
Source:R/hmde_extract_estimates.R
hmde_extract_estimates.Rd
Extract samples and return measurement, individual, and population-level estimates
Value
named list with data frames for measurement, individual, population-level, and error parameter estimates
Examples
# basic usage of hmde_extract_estimates
hmde_model("constant_single_ind") |>
hmde_assign_data(Trout_Size_Data)|>
hmde_run(chains = 1, iter = 1000,
verbose = FALSE, show_messages = FALSE) |>
hmde_extract_estimates(Trout_Size_Data)
#>
#> SAMPLING FOR MODEL 'constant_single_ind' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 2e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.2 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 1000 [ 0%] (Warmup)
#> Chain 1: Iteration: 100 / 1000 [ 10%] (Warmup)
#> Chain 1: Iteration: 200 / 1000 [ 20%] (Warmup)
#> Chain 1: Iteration: 300 / 1000 [ 30%] (Warmup)
#> Chain 1: Iteration: 400 / 1000 [ 40%] (Warmup)
#> Chain 1: Iteration: 500 / 1000 [ 50%] (Warmup)
#> Chain 1: Iteration: 501 / 1000 [ 50%] (Sampling)
#> Chain 1: Iteration: 600 / 1000 [ 60%] (Sampling)
#> Chain 1: Iteration: 700 / 1000 [ 70%] (Sampling)
#> Chain 1: Iteration: 800 / 1000 [ 80%] (Sampling)
#> Chain 1: Iteration: 900 / 1000 [ 90%] (Sampling)
#> Chain 1: Iteration: 1000 / 1000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.056 seconds (Warm-up)
#> Chain 1: 0.037 seconds (Sampling)
#> Chain 1: 0.093 seconds (Total)
#> Chain 1:
#> $model_name
#> [1] "constant_single_ind"
#>
#> $measurement_data
#> # A tibble: 135 × 5
#> ind_id time y_obs obs_index y_hat
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 0 52 1 66.0
#> 2 1 1.91 60 2 71.9
#> 3 1 4.02 70 3 78.5
#> 4 1 6.04 80 4 84.7
#> 5 2 0 80 1 66.0
#> 6 2 1.90 85 2 71.9
#> 7 2 3.94 93 3 78.2
#> 8 2 5.96 94 4 84.5
#> 9 3 0 52 1 66.0
#> 10 3 2.03 65 2 72.3
#> # ℹ 125 more rows
#>
#> $individual_data
#> # A tibble: 1 × 5
#> ind_id ind_beta_mean ind_beta_median ind_beta_CI_lower ind_beta_CI_upper
#> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 1 3.10 3.08 2.15 4.12
#>
#> $error_data
#> # A tibble: 1 × 5
#> par_name mean median CI_lower CI_upper
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 global_error_sigma 11.2 11.2 9.98 12.7
#>